

A chemical structure drawing game for building scientific communications skills and enhancing engagement of first year students

Cristina Navarro Reguero and Matthew N. Hopkinson

School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU

Email: cristina.navarro-reguero@newcastle.ac.uk, matthew.hopkinson@newcastle.ac.uk

Introduction

Gamification has been shown to be effective in education.^[1]

- Increases motivation and engenders a fun learning environment
- Develops adaptability and responsiveness skills^[2,3]

Motivation

- Engagement among undergraduate students has been decreasing over recent years, especially post COVID
- As Senior Tutors, we are developing strategies to improve engagement and build a cohesive learning environment

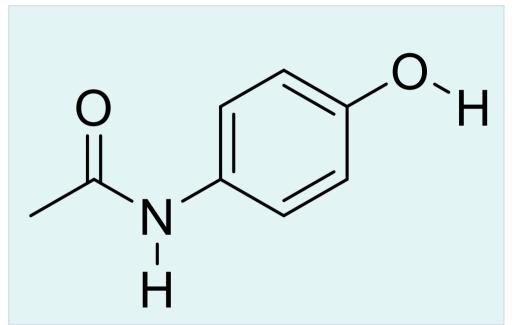
Engagement is known to have a large effect on student attainment.^[4]

Educators should provide stimulating in-person environments^[5]

CHEMmunicate: The Game

- Ca. 10-20 Stage 1 UGs are split into two teams who play against each other in a new game: CHEMmunicate
- Similar to "Guess Who?", the game involves identifying chemical structures using simple Yes/No questions
- CHEMmunicate also has direct learning relevance through building students' chemistry vocabulary and ability to describe structural features

• Therefore, we have introduced new sessions for Stage 1 undergraduates termed "Senior Tutor Check-Ins"

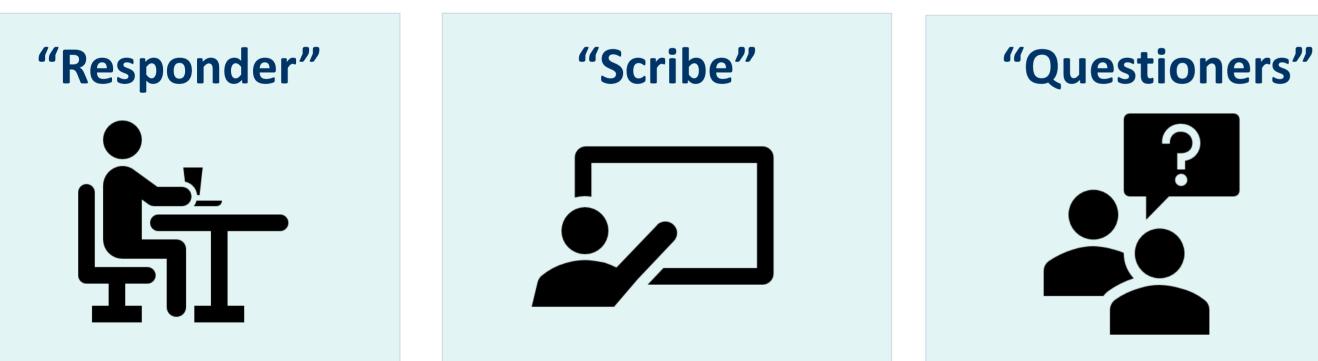

Example: Paracetamol

Students are provided with the molecular formula at the start

Structural Features & Functional Groups

Example Qs:

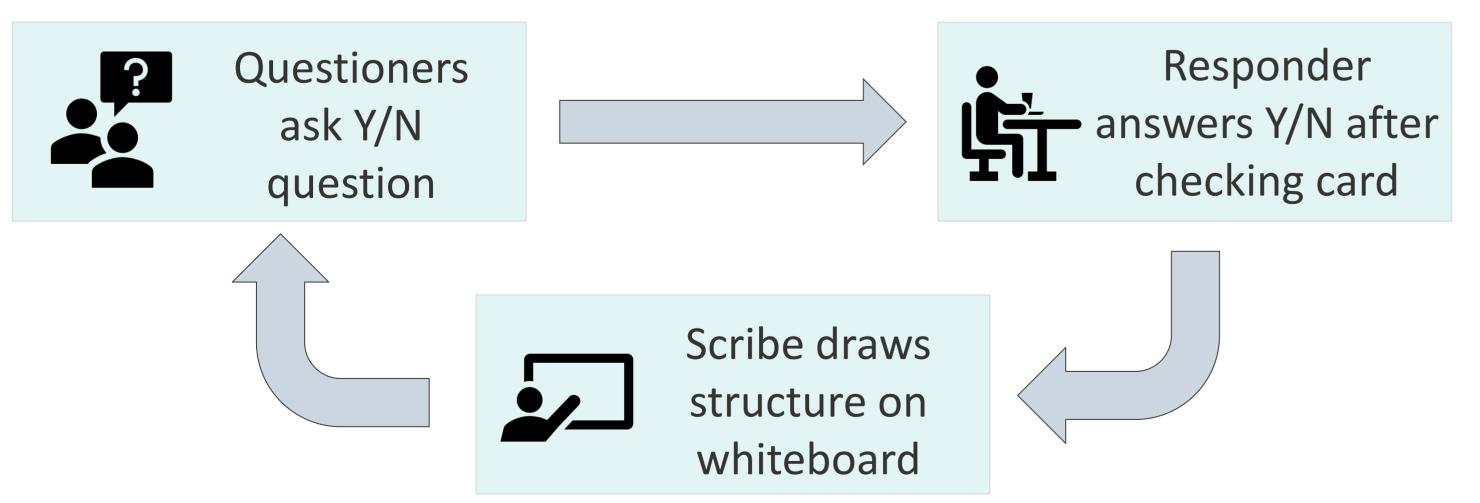
- Is there an amine? (No)
- Is there an amide? (Yes)
- Are there any rings? (Yes)



Prompts from Session Leaders:

- What functional groups do you know that contain a nitrogen?
- How could the carbon atoms

How to Play


Step 1: Students Assigned Roles within their Group

1 student given structure & answers Y/N to questioners

1 student draws structure according to the answers

Step 2: The Game Ensues...

• Is there an aromatic ring? (Yes)

- Is there a carbonyl group (No)
- Is there a hydroxy group (Yes)...

be arranged? Must they always be in a chain?

Learning Goal: Promote the use of chemical terminology (e.g. functional groups, avoid "is this bonded to that?")

Connectivity

Example Qs:

- Is the amide bonded to the arene through the N? (Yes)
- Is the amide situated at the para-position? (Yes)...

Prompts from Session Leaders:

- What positions on aryl rings do you know?
- What about if we give the carbon atoms numbers?

Learning Goal: Encourage atom numbering, demonstrating the value of IUPAC nomenclature. Avoid "is this atom bonded here?".

Topics for Post-Game Discussions:

- What is this molecule used for?
- This is an acidic molecule. Where would it be deprotonated? First?
- Other potential topics:
- Aromaticity?
- Synthesis? Reactivity?...

Role of the Session Leaders (One per group)

- Support use of scientific vocabulary
- Encourage participation and build enthusiasm

Step 3: And the Winner is...

Winning team first to draw the correct structure

Post-game discussions give opportunities for additional learning

• Help responder and scribe

• Provide helpful tips to keep

the game moving

Other students ask

Y/N questions to

work out structure

Outcomes

Provided opportunity to meet cohort in an informal setting

 Improve confidence of students to approach us going forward

Game builds communication skills and learning community

Attendance good and student feedback very positive

References [1] Kapp, K. M. "The Gamification of Learning and Instruction: Game-based Methods and Strategies for Training and Education." Wiley, 2012; Vol. 4, 81. [2] Richter, G.; Raban, D. R.; Rafaeli, S. in Gamification in Education and Business; Springer: Cham, Switzerland, 2015, 21. [3] Samide, M. J.; Wilson, A. M. Chem. Educ. 2014, 19, 167. [4] Kuh, G. D.; Cruce, T. M.; Shoup, R.; Kinzie, J.; Gonyea, R. M. J. Higher Educ. 2008, 79, 540. [5] King, S. M. J. Chem. Educ. 2023, 100, 243.